2022

  1. Jeeja Rani A.T,; Asha Thomas,; Mathew Kuruvilla,; Muhammed Arshad,; Abraham Joseph. The co-adsorption of thymohydroquinone dimethyl ether (THQ) and coumarin present in the aqueous extract of Ayapana triplinervis on mild steel and its protection in hydrochloric acid up to 323 K: computational and physicochemical studies. RSC Advances. 2022, 12, 14328–14341. DOI: 10.1039/d2ra02109a
  2. Linda Williams,; Mohammed Arshad,; Jeeja Rani A.T,; Abraham Joseph. Biogenic MnO2 nanoparticles derived from a Cedrus deodara pine needle extract and their composites with polyaniline/activated charcoal as an electrode material for supercapacitor applications. New J. Chem. 2022, 46, 4325–4333 DOI: 10.1039/d1nj05380a
  3. Jyothi P. Ramachandran , Anu Antony , Resmi M. Ramakrishnan  , Scott L. Wallen , Poovathinthodiyil Raveendran. CO2-solvated liquefaction of polyethylene glycol (PEG): A novel, green process for the preparation of drug-excipient composites at low temperatures. Journal of CO2 Utilization,2022,(59), 101971. DOI: https://doi.org/10.1016/j.jcou.2022.101971
  4. L. Rajan, M.P. Sidheekha, A. Shabeeba, Y.A. Ismail, Conducting polymers as bio-mimetic multistep macromolecular sensors of working conditions: polyindole/polyvinyl alcohol hybrid film senses electrical and chemical working ambient, Materials Chemistry Frontiers, 6(2022) 1706-18.https://doi.org/10.1039/D2QM00322H
  5. A. Shabeeba, Y.A. Ismail, Chitosan/polypyrrole hybrid film as multistep electrochemical sensor: sensing electrical, thermal and chemical working ambient, Mater Res Bull, 152(2022) 111817.https://doi.org/10.1016/j.materresbull.2022.111817
  6. R. Rajamany, S. Prakash, Y.A. Ismail, Synthesis and characterisation of polyaniline/polyvinyl alcohol composites as supercapacitor electrode materials, Plastics, Rubber and Composites, 51(2022) 240-9. http://dx.doi.org/10.1080/14658011.2021.1981090
  7. M.P. Sidheekha, L. Rajan, Y.A. Ismail, Reaction driven biomimetic sensing characteristics of polyaniline/chitosan hybrid film: Sensing chemical and electrical reaction conditions, Mater Chem Phys, 279(2022) 125769.https://doi.org/10.1016/j.matchemphys.2022.125769
  8. A. Thadathil, H. Pradeep, D. Joshy, Y.A. Ismail, P. Periyat, Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications, Materials Advances, 3(2022) 2990-3022.https://doi.org/10.1039/D2MA00022A
  9. A.K. Shabeeba, M.M. Manikandan, M.P. Sidheekha, L. Rajan, Y.A. Ismail, Poly-o-toluidine coated polyvinyl alcohol film: Reaction driven sensing capabilities, Materials Today: Proceedings, 51(2022) 2293-9.https://doi.org/10.1016/j.matpr.2021.11.403
  10. M.P. Sidheekha, K. Nufaira, A.K. Shabeeba, L. Rajan, Y.A. Ismail, Characterization of polyanilines synthesized at different pH for electrochemical sensing and supercapacitor applications, Materials Today: Proceedings, 51(2022) 2286-92.https://doi.org/10.1016/j.matpr.2021.11.402
  11.  Anjali, C.; Renuka, N. K., Atmospheric water harvesting: Prospectus on graphene-based materials. Journal of Materials Research 2022, 1-14. DOI:10.1557/s43578-022-00629-8
  12. Madhushree, R.; Uc, J. R. J.; Pinheiro, D.; Renuka, N.; Kr, S. D.; Park, J.; Manickam, S.; Choi, M. Y., Architecture of visible-light induced Z-scheme MoS2/g-C3N4/ZnO ternary photocatalysts for malachite green dye degradation. Environmental Research 2022, 214, 113742. DOI:10.1016/j.envres.2022.113742
  13.  Raveendran, P. V.; Renuka, N., Hydrothermal synthesis of biomass-derived carbon nanodots: Characterization and applications. Materials Chemistry and Physics 2022, 126236. DOI:10.1016/j.matchemphys.2022.126236
  14. Pallilavalappil, S.; Raveendran, V. P.; Kizhakayil, R. N., From Weed to Shining ‘Mystic Stars’: Value‐Added Applications of Siam Weed Derived Carbon Dots. ChemistrySelect 2022, 7 (19), e202200080. DOI:10.1002/slct.202200080
  15. Akhila, A.; AR, S. B.; Anappara, A. A.; Renuka, N., Specific ultralow level chemo-recognition using Graphene-fluorophore supramolecular assembly: Fine-tuning the fluorophore framework. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 266, 120408. DOI:10.1016/j.saa.2021.120408
  16. Raveendran, P. V.; Renuka, N., Carbon dots as a sustainable alternative to plant extracts for the green synthesis of noble metal nanoparticles. Environmental Nanotechnology, Monitoring & Management 2022, 18, 100676. DOI:10.1016/j.enmm.2022.100676
  17. Raveendran, P. V.; Aswathi, B.; Renuka, N., Arrowroot derived carbon dots: Green synthesis and application as an efficient optical probe for fluoride ions. Materials Today: Proceedings 2022, 51, 2417-2421.DOI:10.1016/j.matpr.2021.11.602
  18. Amruth, K.; Abhirami K.M.; Sankar, S.; Ramesan, M. T.   Synthesis, Characterization, Dielectric Properties and Gas Sensing Application of Polythiophene/ Chitosan Nanocomposites. Inorg. Chem. Commun., 2022, 136, 109184. DOI:   10.1016/j.inoche.2021.109184
  19. Parvathi, K.; Ramesan, M. T.   Natural Rubber Composites Filled with Zinc Ferrite Nanoparticles Focus on Structural, Morphological, Curing, Thermal and Mechanical Properties Res. Chem. Inter. 2022, 48, 129-144. DOI: 10.1007/s11164-021-04586-5
  20. Furhan; Ramesan, M. T. Enhanced dielectric properties, thermal stability and ammonia sensing performance of poly(diphenylamine)/ZnO nanocomposites via one step polymerization, J.Appl. Polym. Sci, 2022, DOI: 2022103110.1002/app.52133
  21. Furhan; Ramesan, M. T. Development of conductive poly (para-aminophenol)/ zinc oxide nanocomposites for optoelectronic devices, Polym. Bull. 2022 DOI: 10.1007/s00289-022-04373-1 
  22. Sankar, S.; Ajith, G.; Ramesan, M. T.   Copper Alumina @ Poly (aniline-co-indole) Nanocomposites: Synthesis, Characterization, Electrical Properties and Gas Sensing Applications, RSC Adv., 2022, 12, 17637-17644, DOI: 10.1039/D2RA02213C
  23. Parvathi, K.; Bahuleyan B. K;. Ramesan, M. T. Enhanced Optical, Thermal and Electrical Properties of Chlorinated Natural Rubber/ Zinc Ferrite Nanocomposites for Flexible Electrochemical Devices. J. Macromol. Sci. A. 2022, 59, 466-479. DOI: 10.1080/10601325.2022.2080076.
  24. Parvathi, K.; Ramesan, M. T.   Compliant Materials Based on Nickel Oxide/ Chlorinated Natural Rubber Nanocomposites. Polym. Compos., 2022, 43, 2628-2637, DOI:https://doi.org/10.1002/pc.26562 
  25. Jayakrishnan, P.; Jithin, K.K; Meera, K.; Ramesan, M. T.  Synthesis, Characterization, Magnetoelectric Properties and Gas Sensing Application of Poly (anthranilic acid-co-indole)/ Magnetite Nanocomposites, 2022, J. Thermoplast. Compos. Mater. DOI: 10.1177/08927057221098969.
  26. Parvathi, K.; Ramesan, M. T. Structure, properties and antibacterial behaviour of nickel oxide reinforced natural rubber nanocomposites for flexible electronic applications.J.Appl. Polym. Sci, 2022, DOI: 2022103110.1002/app.1918
  27. Parvathi, K.; Ramesan, M. T.  Insights into Structural, Thermal, Electrical and Mechanical Properties of Copper Alumina Reinforced Chlorinated Natural Rubber Nanocomposites J. Thermoplast. Compos. Mater. 2022, DOI: 10.1177/08927057221083495.
  28. Parvathi, K.; Ramesan, M. T.   High Performance Chlorinated Natural Rubber/ Zinc Ferrite Nanocomposite Prepared Through Industrial Compounding Technique. Polym. Bull. 2022, DOI: 10.1007/s00289-022-04201-6
  29. Parvathi, K.; Bahuleyan B. K;. Ramesan, M. T.  Flexible Conductive Nanocomposites for Electrochemical Devices Based on Chlorinated Natural Rubber/ Nickel Oxide Nanoparticles, J. Inorg. Org. Polym. Mater., 2022 DOI: 10.1007/s10904-022-02307-y 
  30. Parvathi, K.; Bahuleyan, B.K.; Ramesan, M. T.   Optical, Thermal and Temperature Dependent Electrical Properties of Chlorinated Natural Rubber/Copper Alumina Nanocomposites for Flexible Electrochemical Devices. Res. Chem. Inter. 2022, 48, 3897-3914. DOI: 10.1007/s11164-022-04790-x
  31. Sankar, S.;  Ramesan, M. T.  Synthesis, Characterization, Conductivity and Gas Sensing Performance of Copolymer Nanocomposites Based on Copper Alumina and Poly (aniline-co-pyrrole). Polym. Eng. Sci. 2022, 62, 2402-2410. DOI: 10.1002/pen.26014 
  32. Suvarna, S.; Furhan;Parvathi, K.; Ramesan, M. T. Role of Cu-Al2O3 nanoparticles on the performance of polyvinylchloride nanocomposites. J. Vinyl Addt. Technol. 2022, DOI:  10.1002/vnl.21939
  33. Furhan; Ramesan, M. T. Zinc Oxide Reinforced Poly(para-aminophenol) Nanocomposites: Structural, Thermal Stability, Conductivity and Ammonia Gas Sensing Applications. J. Macromol. Sci. A. 2022, Doi: 10.1080/10601325.2022.2111262
  34. Suvarna, S.; Nirajaana, V. S.;Subburaj, M.; Ramesan, M. T. Temperature-dependent conductivity, optical properties, thermal stability and dielectric modelling studies of Cu-Al2O3/CPE/PVC blend nanocomposites. Bull. Mater. Sci. 2022
  35. Furhan; Ramesan, M. T. High Performance Optical and Electrical Properties of Zinc Oxide Reinforced Poly(diphenylamine) Nanocomposites for Optoelectronic Applications.Polym. Eng. Sci. 2022,  DOI: 10.1002/pen.26114 
  36. Kumar, K.S., Aravindakshan, K.K. Synthesis, in Vitro and in Vivo Antitumor and Antimicrobial Activities of a Novel Schiff Base Ligand, (e)-ethyl-3-((2-((e)-(2-Hydroxybenzylidene)Amino)Ethyl)Imino)Butanoate and its Transition Metal Complexes. Pharm Chem J 55, 1378–1389 (2022). https://doi.org/10.1007/s11094-022-02585-3
  37. K.G. Sangeetha, K.K. Aravindakshan,Experimental, NBO, NLO and docking analysis of a novel ligand derived from vanillin and N(4)-methyl-N(4)-phenylthiosemicarbazide and its transition metal complexes, Results in Chemistry, 4 100453 (2022) https://doi.org/10.1016/j.rechem.2022.100453
  38. Nikhil, C.; Davis, J.; Muraleedharan, K.; Pillai, S. Glomus Tumor: A Case Series Study of 30 Cases and Review of the Literature. J. Orthop. Assoc. South Indian States 2022, 19 (1), 39–43. https://doi.org/10.4103/joasis.joasis_37_21
  39. Puthanveedu, V.; Muraleedharan, K. Phytochemicals as Potential Inhibitors for COVID-19 Revealed by Molecular Docking, Molecular Dynamic Simulation and DFT Studies. Struct. Chem. 2022. https://doi.org/10.1007/s11224-022-01982-4.
  40. Puthanveedu, V.; Pulikkool, C.; Poonkottil, N.; Muraleedharan, K. Theoretical Probing to the Reactivity and Biological Effects of the Phytochemical, Coumestrol and Its Derivatives. Chem. Phys. Impact 2022, 4, 100080. https://doi.org/https://doi.org/10.1016/j.chphi.2022.100080.
  41. K, R. C.; C, S. P.; T, S. B.; K, M. Structure and Non-Covalent Interactions of (E,Z)3-Benzoyl-1,5-Bis(4-Ethoxyphenyl)Formazan: A Crystallographic and DFT/TD-DFT Study. J. Mol. Struct. 2022, 1266, 133501. https://doi.org/10.1016/j.molstruc.2022.133501.
  42. Nadira, P. P.; Mujeeb, V. M. A.; Rahman, P. M.; Muraleedharan, K. Effects of Cashew Leaf Extract on Physicochemical, Antioxidant, and Antimicrobial Properties of N, O–Carboxymethyl Chitosan Films. Carbohydr. Polym. Technol. Appl. 2022, 3, 100191. https://doi.org/10.1016/j.carpta.2022.100191.
  43. Thadathil, A.; Pradeep, H.; Joshy, D.; Ismail, Y. A.; Periyat, P., Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications. Materials Advances 2022, 3 (7), 2990-3022.
  44. Pradeep, H.; M, B.; Suresh, S.; Thadathil, A.; Periyat, P., Recent trends and advances in polyindole-based nanocomposites as potential antimicrobial agents: a mini review. RSC Advances 2022, 12 (13), 8211-8227.
  45. Thadathil, A.; Kavil, J.; Kovummal, G. R.; Jijil, C. P.; Periyat, P., Facile Synthesis of Polyindole/Ni1–xZnxFe2O4 (x = 0, 0.5, 1) Nanocomposites and Their Enhanced Microwave Absorption and Shielding Properties. ACS Omega 2022, 7 (13), 11473-11490.

Contact Us

Department of Chemistry
University of Calicut
Thenhipallam PO
Malappuram - Kerala, India
PIN 673635
Phone 0494 2407414, 2407413
 
Copyright © 2017 University of Calicut. All Rights Reserved | Powered By CUCC